Traitement naturel de l'intoxication au Nickel. Remèdes naturels pour lutter contre la carcinogénèse du Nickel. Cancer et Nickel, quel rapport ? L'exposition humaine à la pollution au nickel a le potentiel de créer...
Direction scientifique, Dr J. Burgos
Medecin - Acupuncture
Mise à jour : 2022-03-21 10:54:59
Introduction au traitement naturel l'intoxication au Nickel
Le nickel est le 24ème élément naturel en abondance dans la croûte terrestre et distribué largement dans l'environnement.
Les principaux dépôts de minerai de nickel sont situés en Australie, au Canada, à Cuba, en Indonésie en Nouvelle Calédonie, et en Russie.
Les sources naturelles de nickel atmosphérique sont la poussière des émissions volcaniques, l'érosion des roches et des sols, la combustion des carburants, l'émission lors d'extraction et de raffinage.
La consommation importante de produits contenant du nickel conduit inévitablement à la pollution dans l'environnement par le nickel et ses dérivés à tous les stades de la production, utilisation et distribution.
Le nickel lixivie des emplacements de décharges et contribue à la contamination de la couche aquifère. Les pluies acides ont une tendance à mobiliser le nickel du sol et à augmenter la concentration en nickel des eaux souterraines avec consommation accrue chez les plantes, micro-organismes et animaux.
L'exposition du nickel se produit premièrement par l'inhalation et l'ingestion particulièrement élevées chez les travailleurs en métallurgie.
L'implantation d'endoprothèses contenant du nickel tels que prothèses orthopédiques, ponts dentaires, prothèses de valves cardiaques, fils de stimulateur cardiaques ainsi que les amalgames dentaires peuvent causer des perturbations immunologiques autour de ces implants.
L'administration de médications contaminées par le nickel (albumine, produit de radiocontrast, produit d'hémodialyse) augmente l'exposition parentérale de manière significative.L'absorption cutanée du nickel, peut se produire par le port des bijoux, la manipulation de la monnaie ou d'outils fabriqués d'amalgames contenant du nickel.
L'ingestion de nickel lors de régimes riches en farine d'avoine, cacao, noix, produits de soja peut atteindre 900µg par jour.
Dans les grandes villes et les régions industrielles, la concentration de nickel atmosphérique est en rapport avec les cendres volatiles de la combustion du carburant et des déchets, et peut atteindre jusqu'à 120-170 ng/m3 en comparaison de 6-17ng/m3 dans les régions urbaines.
La fumée de cigarette peut encore augmenter le nickel inhalé.
Une autre source de contamination est la consommation de produits végétaux qui peut atteindre jusqu'à 1mg Ni /kg.
Les risques de cancers respiratoires sont secondaires à des expositions à des concentrations de nickel soluble au-delà de 1mg/m3 et non soluble au-delà de 10mg/m3.
Contrairement aux composés insolubles, tels que le NiO, les sels solubles sont facilement absorbés par les tractus pulmonaires et digestifs, et moins par la peau.
La volatilité et la lipo-solubilité du nickel carbonyle Ni(CO)4 lui permettent de pénétrer les membranes des cellules, et sa réactivité réductrice contribue à sa toxicité élevée.
Le nickel carbonyle inhalé est rapidement absorbé par les poumons et entre dans les globules rouges où il est converti en Ni2+ et CO.
Dans le plasma humain, le Ni2+ est lié à des constituants ultrafiltrables : albumine, histidine, nickeloplasmine, une alpha 2-macroglobuline. Dans le cytosol des tissus, le nickel est lié à plusieurs protéines et peptides.
La propension des ouvriers du nickel à développer des cancers des cavités nasales a été rapportée la première fois par Bridge en 1933. Depuis des décennies plusieurs résultats pilotes ont été confirmés par de nombreuses études épidémiologiques chez l'homme et essais biologiques de carcinogenèse chez les animaux.
Les études épidémiologiques montrent une mortalité accrue chez les ouvriers de raffineries de nickel par carcinomes, du poumon et des cavités nasales, liée à l'exposition chronique de poussières et de vapeurs de Ni lors de la torréfaction et de la fonte.
De même la soudure d'alliage de Ni, (par exemple l'acier inoxydable) peut être source de telles vapeurs.
Pendant des années l'on a cru qu'uniquement les particules de poussières insolubles dans l'eau ( Ni3S2, NiO) étaient cancérogènes. Cependant, des données épidémiologiques plus récentes, indiquent clairement que l'inhalation des composés de NiSO4 hydrosolubles, lors d'électroraffinage sont aussi cancérigènes et de manière doses dépendantes.
L'interaction entre le tabagisme et l'exposition au nickel semble être additive plutôt que multiplicative.
Parmi les 100 cancers sino nasaux de ces raffineries étudiées par Sunderman, 48% étaient des carcinomes des cellules squameuses, 39 % des carcinomes non différenciés et 6% d'adénocarcinomes.
Parmi les 259 cas de tumeurs des poumons 67% sont des carcinomes de cellules squameuses.
Il n'y a aucune évidente épidémiologique de risque de cancer par l'environnement général ou exposition par le Ni alimentaire.
D'autres risques accrus, tels que, carcinomes du larynx, du rein, de la prostate, de l'estomac et sarcomes de tissus mous ont été notés, mais la signification statistique de ces résultats est douteuse.
Sans compter que des expositions professionnelles - le nickel libéré par endoprothèses, plaques et vis de réparation osseuse ainsi que d'autres matériaux médicaux, et les amalgames contenant du nickel - ont été suspectées d'être la cause de tumeurs locales sporadiques, mais ceci n'est pas prouvée.
De façon générale, l'implantation de corps étranger, de cobalt métallique, de nickel métallique, d'un alliage de poudre se composant de 66-67%, de chrome de 13-16% et de fer de 7%, a été récemment classifiée comme ‘' probablement cancérogène aux humains ‘' (group2B) auprès du comité du CIRC (Centre International de Recherche sur le Cancer) soutenu par le concept fondamental que les composés de nickel peuvent libérer des ions dans des sites critiques des cellules cibles
L'évaluation du CIRC conclue :
‘‘il y a une évidence suffisante chez l'homme pour la cancérogénicité du sulfate de nickel et des combinaisons de sulfures et d'oxydes dans l'industrie de raffinage du nickel (Groupe I), il y a une évidence insatisfaisante chez l'homme pour la cancérogénicité du Ni métallique et alliages de nickel (Groupe 2B).''Evaluation globale : les composés de Ni sont cancérigènes pour humains (Groupe 1).
Le nickel métallique est probablement cancérogène pour les humains (Groupe 2 B).
Les effets génétiques et épi génétiques du Ni2+ sont le résultat indirect de la liaison du Ni2+ avec des composants moléculaires de la cellule y compris des protéines de chromatine, et non d'un effet direct de formation mutagénique d'additif d'ADN.
La co-administration de Ni3S2 et de métaux essentiels tels que Mg2+, Mn2+, Zn2+, Fe3+ (chez les animaux d'expérience), résulte en une diminution de la carcinogenèse.
Cette concurrence du Ni avec les métaux essentiels pour les ligands communs et leurs sites de liaison peuvent être à la base de l'inhibition observée de la carcinogenèse expérimentale de nickel par le Mg 2+, Mn2+, Zn2+ et dans certains cas aussi le Fe2+ et le Ca2+.
Cependant, l'éventail le plus large possible des effets appropriés à la carcinogenèse, résulte de l'activité redox des complexes de Ni2+ avec certains ligands cellulaires, y compris des acides aminés, des peptides, des protéines, et d'autres molécules mais pas le DNA.
Les radicaux libres (l'anion superoxyde : O2- ; le peroxyde d'hydrogène : H2O2 ; le radical hydroxyl : OH) libérés par réaction de ces complexes avec l'oxygène ambiant, sont capables de provoquer des endommagements aux ligands mêmes et d'autres molécules.C'est ainsi que si le complexe métallique est situé dans la chromatine, c'est le cas de l'histone H3 et H2A, ROS peut être généré près du DNA et produire les différents types d'endommagement oxydatif du DNA.
L'hypothèse épigénétique de la cancérogenèse au nickel, peut résulter uniquement par formation de gènes silencieux tel que les gènes suppresseurs et de sénescence, même en absence de mutation.
Cette hypothèse intéressante dans l'activité (tumor-promoting) de faibles doses de nickel, est typique de la forme soluble.
La capacité génotoxique et mutagénique, responsable de l'altération du DNA pour des doses intracellulaires de Ni2+ élevées, sont mieux délivrées par phagocytose.
La cellule cible au Ni2+ inclus le système immunitaire entre autres par le système NF-kB.
Dans cette activation observée par la réponse inflammatoire au Ni2+, le stress oxydatif peut être augmenté. De même l'inhibition des cellules lymphocytaires NK (natural killer) par le métal peut supprimer la reconnaissance et l'élimination des cellules mutées.
La prévalence de la dermatite de contact au Ni est en croissance importante chez la femme et il y a une relation entre les pearcing et l'induction de l'allergie au nickel.
Le mode de pearcing anticipe l'augmentation de la prévalence chez l‘homme.
L'allergie au nickel associé au SFC avec ou sans auto-immunité est décrite pour la première fois par le professeur Stejskal en 1999 ( http://www.melisa.org/ ), en examinant l'hypersensibilité aux métaux lourds chez des patients à pathologies diverses compliquées de SFC et ou FM.
Les dermatites de contact, stomatites de contact, parodontites, lichen plan, résistance aux antibiotiques, sont décrites après sensibilisation aux métaux lourds.
L'inflammation résultante, peut se produire ailleurs dans l'organisme ou les métaux lourds sont déposés.
Chez ces patients souffrant de SFC la réaction lymphocytaire est augmentée de façon significative.
Elle constate une amélioration chez de nombreux patients après remplacement d'amalgames dentaires et élimination des métaux ; il n'y a aucune corrélation entre l'intensité, les plaintes et le nombre d'amalgames.
Les amalgames dentaires sont en contact avec les muqueuses de la cavité dentaire pendant de nombreuses années. Le praticien doit choisir le moins corrosif, corrosion qui est augmentée par l'acidité, la plaque dentaire, la flore intra orale.
Il s'agit d'une base immunologique plutôt que toxicologique et génétiquement liée.
Pas uniquement la corrosion des amalgames dentaires mais aussi les implants orthopédiques, peuvent causer un rejet, une dermatite ou une mauvaise cicatrisation chez les patients sensibilisés et pourraient causer des réactions systémiques et des symptômes généraux.
Le métal inoxydable (austénitique : Cr, Mo, Ni), représente un groupe résistant à la corrosion. Le métal libéré par ionisation, peut se déposer dans les tissus environnants d'où metalose, dés lors, le Ni, phagocyté par les macrophages joue un rôle central dans le processus inflammatoire.
L'inhalation de la fumée de cigarette et l'absorption du nickel alimentaire peuvent déclencher une allergie de type 4 et contribuer aux SFC et aux douleurs musculaires.
L'allergie au Ni avec regard sur des symptômes diffus et généraux tels que SFC et FM n'est pas totalement comprise et certainement sous-estimée.
Le patch test peut aggraver l'allergie existante.
Une stratégie de détection de toute perturbation immunologique, comme le permet le test LTT (nom répandu Melisa), s'accompagnera d'une action thérapeutique visant concomitamment à ...
L'exposition humaine à la pollution au nickel, a le potentiel de créer une variété d'effets pathologiques comme, des allergies cutanées, de la fibrose pulmonaire, des pathologies cardiovasculaires et rénales dont la plus sérieuse est liée à l'activité cancérigène.
La fibromyalgie (FM) et le syndrome de fatigue chronique (SFC) sont aussi incriminés.
Le mécanisme exact de la carcinogenèse induite par le nickel n'est pas connu et a été le sujet de nombreuses investigations épidémiologiques et expérimentales. Le nickel particulièrement à haute dose a une propriété évidente d'activité mutagénique et génotoxique
Recherches associées à Traitement naturel de lutte contre les effets cancérigènes du Nickel : Nkl Pack, Tmd Labosp, comment tuer les métastases naturellement, 4 aliments qui détruisent les cellules cancéreuses, tuer les cellules cancéreuses naturellement, traitement naturel du cancer du cavum, remède miracle cancer, aliments qui tuent les cellules cancéreuses, remède cancer caché, cancer guérison naturelle
Préambule : Le choix des produits décrits ou des substances qui les composent est le fait de notre expérience et celle de nos confrères auteurs de leurs publications quant à leurs propriétés reconnues en phytothérapie en vue d'une aide réelle à la résolution de cette pathologie ; ces conseils sont délivrés à titre d'exemple, de façon non exhaustive et ne doivent pas priver l'internaute de procéder aux recherches qui lui semblent nécessaires. Par ailleurs, nos conseils ne remplacent ni ne doivent vous priver de consulter votre professionnel.le de santé pour toute information complémentaire utile conformément aux conditions générales d'utilisation de notre site .
Cancer et alimentation - Les aliments à éviter ou privilégier en cas de cancer. En matière de prévention contre le cancer, le facteur clé est d'agir en limitant les facteurs de risque, d'apporter une alimentation la plus saine possible.
1 International Agency forResearch on Cancer, IARC
Monographs on the Evaluation
of Carcinogenic Risks to
Humans, vol. 49, Chromium,
Nickel and Welding, IARC
Scientific Publications, Lyon,
1990, pp. 257–445.
2 F.W. Sunderman Jr., Nickel,
in: M. Anke, M. Ihnat, M.
Stoeppler (Eds.), Elements
and their Compounds in the
Environment, Wiley/VCH,
Weinheim, in press.
3 D.G. Barceloux, Nickel,
Clin. Tox. 37 (1999) 239–258.
4 T.P. Coogan, D.M. Latta,
E.T. Snow, M. Costa, Toxicity and
carcinogenicity of nickel
compounds, Crit. Rev. Toxicol. 19
(1989) 341–384.
5 E. Denkhaus, K. Salnikow,
Nickel essentiality, toxicity, and
carcinogenicity, Crit. Rev.
Oncol. Hematol. 42 (2002) 35–56.
6 R.P. Hausinger, Biochemistry
of Nickel, Plenum Press, New
York, 1993.
7 E. Nieboer, J.O. Nriagu
(Eds.), Nickel and Human Health,
Wiley, New York, 1992.
8 S.W. Ragsdale, Nickel
biochemistry, Curr. Opin. Chem. Biol.
2 (1998) 208–215.
9 H. Savolainen, Biochemical
and clinical aspects of nickel
toxicity, Rev. Environ. Health 11 (1996) 167–173.
10 F.W. Sunderman Jr., Nickel,
in: H.G. Seiler, H. Sigel,
A. Sigel (Eds.), Handbook on
Toxicity of Inorganic
Compounds, Marcel Dekker,
New York, 1988, pp. 453–468.
11 F.W. Sunderman Jr., Nickel,
in: J.B. Sullivan Jr.,
G.R. Krieger (Eds.),
Clinical Environmental Health and
Toxic Exposures, Williams
and Wilkins, Baltimore, 2001,
pp. 905–910.
12 F.W. Sunderman Jr., A.
Aitio, L.M. Morgan, T. Norseth,
Biological monitoring of
nickel, Toxicol. Ind. Health 2
(1986) 17–78.
13 S.M. Hopfer, J.V. Linden,
M.C. Crisostomo, F.A.
Catalanatto, M. Galen, F.W.
Sunderman Jr., Hypernickelemia
in hemodialysis patients,
Trace Elem. Med. 2 (1985)
68–72.
14 G.S. Fell, D. Maharaj,
Trace metal contamination of albumin
solutions used for plasma
exchange, Lancet 2 (1986) 467–
468.
15 C.N. Leach Jr., F.W.
Sunderman Jr., Nickel contamination
of human serum albumin
solutions, N. Engl. J. Med. 313
(1985) 1232.
16 C.N. Leach Jr., F.W.
Sunderman Jr., Hypernickelemia following
coronary arteriography,
caused by nickel in the
radiographic contrast
medium, Ann. Clin. Lab. Sci. 17 (1987)
137–144.
17 P.M. Gordon, M.I. White,
T.R. Scotland, Generalized
sensitivity from an
implanted orthopaedic antibiotic minichain
containing nickel, Contact
Dermat. 30 (1994) 181–
182.
18 J.J. Hostynek, H.I.
Maibach, Nickel and the Skin, CRC
Press, Boca Raton, 2002, pp.
1–249.
19 T. Norseth, M. Piscator,
Nickel, in: L. Friberg, G.F.
Nordberg, V.B. Vouk (Eds.),
Handbook on the Toxicology
of Metals, Elsevier/North-Holland
Biomedical Press,
Amsterdam, 1979, pp.
541–553.
20 P. Grandjean, Human
exposure to nickel, in: F.W. Sunderman
Jr., (Ed.), Nickel in the
Human Environment, vol. 53, IARC
Scientific Publications, Lyon,1984, pp. 469–485.
21 E.W. Baader, Berufkrebs,
Neu. Ergeb. Geb. Krebskrankh 1
(1937) 104–128.
22 National Academy of
Sciences (NAS) Nickel, Medical and
Biologic Effects of
Environmental Pollutants, NAS Press,
Washington, DC, 1975, pp.
1–277.
23 R. Doll, Report of the
International Committee on Nickel
Carcinogenesis in Man,
Scand. J. Work. Environ. Health 16
(1990) 9–82.
24 T.K. Grimsrud, S.R.
Berge, J.I. Martinsen, A. Andersen,
Lung cancer incidence among
Norwegian nickel-refinery
workers, 1953–2000, J.
Environ. Monit. 5 (2003) 190–197.
25 K.S. Kasprzak, Animal
studies, an overview, in: E. Nieboer,
J.O. Nriagu (Eds.), Nickel
and Human Health: Current
Perspectives, Wiley, New
York, 1992, pp. 387–420.
26 A.R. Oller, M. Costa, G.
Oberdörster, Carcinogenicity
assessment of selected
nickel compounds, Toxicol. Appl.
Pharmacol. 143 (1997)
152–166.
27 F.W. Sunderman Jr., The
current status of nickel carcinogenesis,
Ann. Clin. Lab. Sci. 3 (1973) 157–180.
28 F.W. Sunderman Jr.,
Carcinogenicity of nickel compounds
in animals, in: F.W.
Sunderman Jr., (Ed.), Nickel in the
88 K.S. Kasprzak et al. /
Mutation Research 533 (2003) 67–97
Human Environment, vol. 53,
IARC Scientific Publications,
Lyon, 1984, pp. 127–142.
29 F.W. Sunderman Jr., L.G.
Morgan, A. Andersen, D. Ashley,
F.A. Forouhar,
Histopathology of sinonasal and lung cancers
in nickel refinery workers,
Ann. Clin. Lab. Sci. 19 (1989)
44–50.
30 K. Hughes, M.E. Meek, R.
Newhook, P.K.L. Chan,
Speciation and health risk
assessment of metals: evaluation
of effects associated with
forms present in the environment,
Regul. Toxicol. Pharmacol.
22 (1995) 213–220.
31 F.W. Sunderman Jr.,
Carcinogenicity of metal alloys in
orthopedic prostheses:
clinical and experimental studies,
Fundam. Appl. Toxicol. 13
(1989) 205–216.
32 J.K. Avery, A. Goldberg,
K.S. Kasprzak, L.C. Lucas,
H.D. Millard, J.R. Natiella,
R. Rhyne, N.W. Rupp, D.F.
Williams, Local tissue
reaction and carcinogenesis (Section
Report), in: B.R. Lang, H.F.
Morris, M.E. Razzoog, (Eds.),
Biocompatibility, Toxicity,
and Hypersensitivity to Alloy
Systems Used in Dentistry,
University of Michigan, Ann
Arbor, 1986, pp. 262–270.
33 D.B. McGregor, R.A. Baan,
C. Partensky, J.M. Rice, J.D.
Wilbourn, Evaluation of the
carcinogenic risks to humans
associated with surgical
implants and other foreign bodies—
a report of an IARC
Monographs Programme Meeting, Eur.
J. Cancer 36 (2000) 307–313.
34 J.A. Campbell, Lung
tumours in mice and man, Br. Med.
J. 1 (1943) 179–183.
35 L.A. Poirier, J.C.
Theiss, L.J. Arnold, M.B. Shimkin,
Inhibition by magnesium and
calcium acetates of lead
subacetate- and nickel
acetate-induced lung tumors in strain
A mice, Cancer Res. 44
(1984) 1520–1522.
36 K.S. Kasprzak, B.A.
Diwan, N. Konishi, M. Misra, J.M.
Rice, Initiation by nickel
acetate and promotion by sodium
barbital of renal cortical
epithelial tumors in male F344 rats,
Carcinogenesis 11 (1990)
647–652.
37 F. Pott, M. Rippe, M.
Roller, M. Csicsaky, M. Rosenbruch,
Carcinogenicity of nickel
compounds and nickel alloys in
rats by intraperitoneal
injection, in: E. Nieboer, J.O. Nriagu
(Eds.), Nickel and Human
Health: Current Perspectives,
Wiley, New York, 1992, pp.
491–502.
38 B.A. Diwan, K.S.
Kasprzak, J.M. Rice, Transplacental
carcinogenic effects of
nickel(II) acetate in the renal cortex,
Carcinogenesis 13 (1992)
1351–1357.
39 J.P.W. Gilman, Metal
carcinogenesis. II. A study on the
carcinogenic activity of
cobalt, copper, iron, and nickel
compounds, Cancer Res. 22
(1962) 158–165.
40 H.F. Hildebrand, G.
Biserte, Cylindrical laminated bodies
in
nickel-subsulphide-induced rhabdomyosarcoma in rabbits,
Eur. J. Cell. Biol. 19 (1979) 276–280.
41 F.W. Sunderman Jr., R.M. Maenza, P.R. Alpass,
J.M.
Mitchell, I. Damjanov, P.J.
Goldblatt, Carcinogenicity of
nickel subsulfide in Fischer
rats and Syrian hamsters after
administration by various
routes, Adv. Exp. Med. Biol. 91
(1977) 57–67.
42 S. Yamashiro, J.P.
Gilman, T.J. Hulland, H.M. Abandowitz,
Nickel sulphide-induced
rhabdomyosarcomata in rats, Acta
Pathol. Jpn. 30 (1980) 9–22.
43 K.S. Kasprzak, P.
Gabryel, K. Jarczewska, Carcinogenicity
of nickel(II)hydroxides and
nickel(II)sulfate in Wistar
rats and its relation to the
in vitro dissolution rates,
Carcinogenesis 4 (1983)
275–279.
44 M. Shibata, K. Izumi, N.
Sano, A. Akagi, H. Otsuka,
Induction of soft tissue
tumours in F344 rats by
subcutaneous, intramuscular,
intra-articular, and retroperitoneal
injection of nickel sulphide
(Ni3S2), J. Pathol. 157
(1989) 263–274.
45 C. Onkelinx, J. Becker,
F.W. Sunderman Jr., Compartmental
analysis of the metabolism
of 63Ni(II) in rats and rabbits,
Res. Commun. Chem. Pathol. Pharmacol. 6 (1973) 663–676.
46 A. Oskarsson, Y.
Andersson, H. Tjalve, Fate of nickel
subsulfide during
carcinogenesis studied by autoradiography
and X-ray powder
diffraction, Cancer Res. 39 (1979) 4175–
4182.
47 N. Sano, M. Shibata, K.
Izumi, H. Otsuka, Histopathological
and immunohistochemical
studies on nickel sulfide-induced
tumors in F344 rats, Jpn. J.
Cancer Res. 79 (1988) 212–221.
48 G.D. Stoner, M.B.
Shimkin, M.C. Troxell, T.L. Thompson,
L.S. Terry, Test for
carcinogenicity of metallic compounds
by the pulmonary tumor
response in strain A mice, Cancer
Res. 36 (1976) 1744–1747.
49 A.V. Saknyn, V.A.
Blokhin, Development of malignant
tumors in rats under the
influence of nickel-containing
aerosols, Vopr. Onkol. 24
(1978) 44–48.
50 K. Parker, F.W. Sunderman
Jr., Distribution of 63Ni in
rabbit tissues following
intravenous injection of 63NiCl2,
Res. Commun. Chem. Pathol. Pharmacol. 7 (1974) 755–762.
51 G. Jasmin, J.L. Riopelle,
Renal carcinomas and erythrocytosis
in rats following intrarenal
injection of nickel
subsulfide, Lab. Invest. 35
(1976) 71–78.
52 G. Jasmin, B. Solymoss,
The topical effects of nickel
subsulfide on renal
parenchyma, Adv. Exp. Med. Biol. 91
(1977) 69–83.
53 F.W. Sunderman Jr., R.M.
Maenza, S.M. Hopfer, J.M.
Mitchell, P.R. Allpass, I.
Damjanov, Induction of renal
cancers in rats by
intrarenal injection of nickel subsulfide,
J. Environ. Pathol. Toxicol. 2 (1979) 1511–1527.
54 K.S. Kasprzak, B.A. Diwan, J.M. Rice, Iron
accelerates
while magnesium inhibits
nickel-induced carcinogenesis in
the rat kidney, Toxicology
90 (1994) 129–140.
55 G. Jasmin, B. Solymoss,
Polycythemia induced in rats by
intrarenal injection of
nickel sulfide, Ni3S2, Proc. Soc. Expl.
Biol. Med. 148 (1975)
774–776.
56 B. Solymoss, G. Jasmin,
Studies of the mechanism of
polycythemia induced in ras
by Ni3S2, Exp. Hematol. 6
(1978) 43–47.
57 F.W. Sunderman Jr., K.S.
McCully, S.M. Hopfer, Association
between erythrocytosis and
renal cancers in rats
following intrarenal
injection of nickel compounds,
Carcinogenesis 5 (1984) 1511–1517.
58 I. Damjanov, F.W.
Sunderman, J.M. Mitchell, P.R. Allpass,
Induction of testicular
sarcoma in Fischer rats by
intratesticular injection of
nickel subsulfide, Cancer Res. 38
(1978) 268–276.
59 D.M. Albert, J.R. Gonder, J.
Papale, J.L. Craft, H.G.
Dohlman, M.C. Reid, F.W.
Sunderman Jr., Induction of
K.S.
Kasprzak et al. / Mutation Research 533 (2003) 67–97 89
ocular neoplasms in Fischer
rats by intraocular injection of
nickel subsulfide, Invest.
Ophthalmol. Vis. Sci. 22 (1982)
768–782.
60 M. Okamoto, Induction of
ocular tumor by nickel subsulfide
in the Japanese common newt,
Cynops pyrrhogaster, Cancer
Res. 47 (1987) 5213–5217.
61 F.W. Sunderman Jr., A.
Donnelly, B. West, J.F. Kincaid,
Nickel poisoning. IX.
Carcinogenesis in rats exposed to
nickel carbonyl, Arch. Ind.
Health 20 (1959) 36–41.
62 A.D. Ottolenghi, J.K.
Haseman, W.W. Payne, H.L. Falk,
H.N. MacFarland, Inhalation
studies of nickel sulfide in
pulmonary carcinogenesis of
rats, J. Natl. Cancer Inst. 54
(1975) 1165–1172.
63 T. Yarita, P. Nettesheim,
Carcinogenicity of nickel subsulfide
for respiratory tract
mucosa, Cancer Res. 38 (1978) 3140–
3145.
64 J.K. Dunnick, M.R.
Elwell, A.E. Radovsky, J.M. Benson,
F.F. Hahn, K.J. Nikula, E.B.
Barr, C.H. Hobbs, Comparative
carcinogenic effects of
nickel subsulfide, nickel oxide, or
nickel sulfate hexahydrate
chronic exposures in the lung,
Cancer Res. 55 (1955)
5251–5256.
65 NTP Study, Toxicology and
Carcinogenesis Studies of
Nickel Oxide 1996 (CAS No.
10101-97-0 CAS No.
1313-99-1 CAS No.
12035-72-2) in F344/N Rats and
B6C3F1 Mice (Inhalation
Studies), US DHHS, Atlanta, GA.
66 R.M. Maenza, A.M.
Pradhan, F.W. Sunderman Jr., Rapid
induction of sarcomas in
rats by combination of nickel
sulfide and 3,4-benzpyrene,
Cancer Res. 31 (1971) 2067–
2071.
67 K.S. Kasprzak, L.
Marchow, J. Breborowicz, Pathological
reactions in rat lungs
following intratracheal injection of
nickel subsulfide and
3,4-benzpyrene, Res. Commun. Chem.
Pathol. Pharmacol. 6 (1973)
237–245.
68 F.W. Sunderman Jr., K.S.
Kasprzak, T.J. Lau, P.O.
Minghetti, R.M. Maenza, N.
Becker, C. Onkelinx, P.J.
Goldblatt, Effect of
manganese on carcinogenicity and
metabolism of nickel
subsulfide, Cancer Res. 36 (1976)
1790–1800.
69 F.W. Sunderman Jr., K.S.
McCully, Effects of manganese
compounds on carcinogenicity
of nickel subsulfide in rats,
Carcinogenesis 4 (1983)
461–465.
70 K.S. Kasprzak, R.V.
Quander, L.A. Poirier, Effects
of calcium and magnesium
salts on nickel subsulfide
carcinogenicity in Fischer
rats, Carcinogenesis 6 (1985)
1161–1166.
71 K.S. Kasprzak, J.M. Ward,
L.A. Poirier, D.A. Reichardt,
A.C. Denn III, C.W. Reynolds,
Nickel–magnesium interactions
in carcinogenesis:
dose–effects and involvement of
natural killer cells,
Carcinogenesis 8 (1987) 1005–1011.
72 K.S. Kasprzak, R.M.
Kovatch, L.A. Poirier, Inhibitory effect
of zinc on nickel subsulfide
carcinogenesis in Fischer rats,
Toxicology 52 (1988)
253–262.
73 K.S. Kasprzak, B.A.
Diwan, J.M. Rice, Iron accelerates
while magnesium inhibits
nickel-induced carcinogenesis in
the rat kidney, Toxicology
90 (1994) 129–140.
74 K.S. Kasprzak, R.E.
Rodriguez, Inhibitory effects of zinc,
magnesium, and iron on
nickel subsulfide carcinogenesis
in rat skeletal muscle, in:
E. Nieboer, J.O. Nriagu (Eds.),
Nickel in Human Health:
Current Perspectives, Wiley, New
York, 1992, pp. 545–559.
75 F.W. Sunderman Jr., Organ
and species specificity in nickel
subsulfide carcinogenesis,
Basic Life Sci. 24 (1983) 107–
127.
76 R.E. Rodriguez, M. Misra,
B.A. Diwan, C.W. Riggs, K.S.
Kasprzak, Relative
susceptibilities of C57BL/6, (C57BL/6× C3H/He)F1, and C3H/He mice to
acute toxicity and
carcinogenicity of nickel
subsulfide, Toxicology 107 (1996)
131–140.
77 M.R. Daniel, Strain
differences in the response of rats to
the injection of nickel
sulphide, Br. J. Cancer 20 (1966)
886–895.
78 R.E. Rodriguez, M. Misra,
S.L. North, K.S. Kasprzak,
Nickel-induced lipid
peroxidation in the liver of different
strains of mice and its
relation to nickel effects on antioxidant
systems, Toxicol. Lett. 57
(1991) 269–281.
79 G.L. Fisher, C.E. Chrisp,
D.A. McNeill, Lifetime effects of
intratracheally instilled
nickel subsulfide on B6C3F1 mice,
Environ. Res. 40 (1986)
313–320.
80 F.W. Sunderman Jr.,
Recent research on nickel carcinogenesis,
Environ. Health Perspect. 40
(1981) 131–141.
81 T. Eitinger, M.A. Mandrand-Berthelot,
Nickel transport
systems in microorganisms,
Arch. Microbiol. 173 (2000)
1–9.
82 P. Pikalek, J. Necasek,
The mutagenic activity of nickel in
Corynebacterium
sp., Folia Microbiol. (Praha) 28
(1983)
17–21.
83 J.A. DiPaolo, B.C. Casto,
Quantitative studies of in vitro
morphological transformation
of Syrian hamster cells by
inorganic metal salts,
Cancer Res. 39 (1979) 1008–1013.
84 K.A. Biedermann, J.T.
Landolph, Induction of anchorage
independence in human
diploid foreskin fibroblasts by
carcinogenic metal salts,
Cancer Res. 47 (1987) 3815–3823.
85 S.R. Patierno, L.A.
Dirscherl, J. Xu, Transformation of
rat tracheal epithelial
cells to immortal growth variants by
particulate and soluble
nickel compounds, Mutat. Res. 300
(1993) 179–193.
86 M. Costa, Mechanisms of
nickel genotoxicity and
carcinogenicity, in: L.W.
Chang (Ed.), Toxicology of Metals,
CRC Press, Boca Raton, 1996,
pp. 245–251.
87 G.A. Kerckaert, R.A.
LeBoeuf, R.J. Isfort, Use of the Syrian
hamster embryo cell
transformation assay for determining
the carcinogenic potential
of heavy metal compounds,
Fundam. Appl. Toxicol. 34
(1996) 67–72.
88 M. Costa, J.S. Nye, F.W.
Sunderman Jr., P.R. Allpass, B.
Gondos, Induction of
sarcomas in nude mice by implantation
of Syrian hamster fetal
cells exposed in vitro to nickel
subsulfide, Cancer Res. 39
(1979) 3591–3597.
89 D.A. Trott, A.P.
Cuthbert, R.W. Overell, I. Russo, R.F.
Newbold, Mechanisms involved
in the immortalization
of mammalian cells by
ionizing radiation and chemical
carcinogens, Carcinogenesis
16 (1995) 193–204.
90 K. Hansen, R.M. Stern, In
vitro toxicity and transformation
potency of nickel compounds,
Environ. Health Perspect. 51
(1983) 223–226.
90 K.S. Kasprzak et al. /
Mutation Research 533 (2003) 67–97
91 H.J. Saxholm, A. Reith,
A. Brogger, Oncogenic
transformation and cell
lysis in C3H/10T 1/2 cells and
increased sister chromatid
exchange in human lymphocytes
by nickel subsulfide, Cancer
Res. 41 (1981) 4136–4139.
92 G. Tveito, I-L. Hansteen,
H. Dalen, A. Haugen, Immortalization
of normal human kidney
epithelial cells by
nickel(II), Cancer Res. 49
(1989) 1829–1835.
93 A. Haugen, D. Ryberg, I-L. Hansteen, H. Dalen, Transformation
of human kidney epithelial
cells to tumorigenicity
by nickel(II) and v-Ha-ras oncogene, Biol. Trace Element
Res. 21 (1989) 451–458.
94 E. Rivedal, T. Sanner,
Metal salts as promoters of in
vitro morphological
transformation of hamster embryo cells
initiated by benzoapyrene,
Cancer Res. 41 (1981) 2950–
2953.
95 H. Miki, K.S. Kasprzak,
S. Kenney, U.I. Heine, Inhibition
of intercellular
communication by nickel(II): antagonistic
effect of magnesium,
Carcinogenesis 8 (1987) 1757–1760.
96 E.C. Foulkes, D.M.
McMullen, On the mechanism of nickel
absorption in the rat
jejunum, Toxicology 38 (1986) 35–42.
97 T. Refvik, T. Andreassen,
Surface binding and uptake of
nickel(II) in human
epithelial kidney cells: modulation by
ionomycin, Carcinogenesis 16
(1995) 1107–1112.
98 G. Zaroogian, P. Yevich,
S. Anderson, Effect of selected
inhibitors on cadmium,
nickel, and benzoapyrene uptake
into brown cells of Mercenaria
mercenaria, Marine Environ.
Res. 35 (1993) 41–45.
99 F.J. Azula, R. Alonso, A.
Marino, M. Trueba, J.M.
Macarulla, Ni2+ impairs thrombin-induced
signal transduction
by acting on the agonist
and/or receptor in human
platelets, Am. J. Physiol.
265 (1993) C1681–C1688.
100 J. Tallkvist, A.M. Wing,
H. Tjalve, Enhanced intestinal
nickel absorption in
iron-deficient rats, Pharmacol. Toxicol.
75 (1994) 244–249.
101 S.G. Schafer, W. Forth,
The influence of tin, nickel, and
cadmium on the intestinal
absorption of iron, Ecotoxicol.
Environ. Safety 7 (1983)
87–95.
102 M. Muller-Fassbender, B.
Elsenhans, A.T. McKie, K.
Schumann, Different
behaviour of 63Ni and 59Fe during
absorption in iron-deficient
and iron-adequate jejunal rat
segments ex vivo, Toxicology 185 (2003) 141–153.
103 H. Gunshin, B. Mackenzie,
U.V. Berger, Y. Gunshin, M.R.
Romero, W.F. Boron, S.
Nussberger, J.L. Gollan, M.A.
Hediger, Cloning and
characterization of a mammalian
proton-coupled metal-ion
transporter, Nature 388 (1997)
482–488.
104 J. Tallkvist, H. Tjalve,
Transport of nickel across monolayers
of human intestinal Caco-2
cells, Toxicol. Appl. Pharmacol.
151 (1998) 117–122.
105 M. Knopfel, G.
Schulthess, F. Funk, H. Hauser, Characterization
of an integral protein of
the brush border
membrane mediating the
transport of divalent metal ions,
Biophys. J. 79 (2000)
874–884.
106 A.J. Ghio, J.H.
Richards, K.L. Dittrich, J.M. Samet, Metal
storage and transport
proteins increase after exposure of the
rat lung to an air pollution
particles, Toxicol. Pathol. 26
(1998) 388–394.
107 M. Costa, J.
Simmons-Hansen, C.W.M. Bedrossian, J.
Bonura, R.M. Caprioli,
Phagocytosis, cellular distribution,
and carcinogenic activity of
particulate nickel compounds
in tissue culture, Cancer
Res. 41 (1981) 2868–2876.
108 J.D. Heck, M. Costa,
Surface reduction of amorphous
NiS particles potentiates
their phagocytosis and subsequent
induction of morphological
transformation in Syrian hamster
embryo cells, Cancer Lett.
15 (1982) 19–26.
109 K. Kuehn, C.B. Fraser,
F.W. Sunderman Jr., Phagocytosis of
particulate nickel compounds
by rat peritoneal macrophages
in vitro, Carcinogenesis 3
(1982) 321–326.
110 M. Costa, M.P.
Abbracchio, J. Simmons-Hansen, Factors
influencing the
phagocytosis, neoplastic transformation, and
cytotoxicity of particulate
nickel compounds in tissue culture
systems, Toxicol. Appl.
Pharmacol. 60 (1981) 313–323.
111 M. Costa, H.H.
Mollenhauer, Carcinogenic activity of
particulate nickel compounds
is proportional to their cellular
uptake, Science 209 (1980)
515–517.
112 R.M. Evans, P.J. Davies,
M. Costa, Video time-lapse
microscopy of phagocytosis
and intracellular fate of
crystalline nickel sulfide
particles in cultured mammalian
cells, Cancer Res. 42 (1982)
2729–2735.
113 G.G. Fletcher, F.E.
Rosetto, J.D. Turnbull, E. Nieboer,
Toxicity, uptake, and
mutagenicity of particulate and soluble
nickel compounds, Environ. Health Perspect. 102 (Suppl. 3)
(1994) 69–79.
114 K.S. Kasprzak, F.W.
Sunderman Jr., Mechanisms of
dissolution of nickel subsulfide
in rats serum, Res. Commun.
Chem. Pathol. Pharmacol. 16
(1977) 95–108.
115 K. Kuehn, F.W. Sunderman
Jr., Dissolution half-times of
nickel compounds in water,
rat serum, and renal cytosol, J.
Inorg. Biochem. 17 (1982)
29–39.
116 A. Longstaff, A.I.T. Walker,
R. Jackh, Nickel oxide, potential
carcinogenicity—a review and
further evidence, in: F.W.
Sunderman (Ed.), Nickel in
the Human Environment, vol.
53, IARC Scientific Publications, Lyon, 1984, pp.
235–244.
117 P. Sen, K. Conway, M.
Costa, Comparison of the localization
of chromosome damage induced
by calcium chromate and
nickel compounds, Cancer
Res. 47 (1987) 2142–2147.
118 K. Conway, M. Costa,
Nonrandom chromosomal alterations
in nickel-transformed
Chinese hamster embryo cells, Cancer
Res. 49 (1989) 6032–6038.
119 P. Sen, M. Costa,
Incidence and localization of sister
chromatid exchanges induced
by nickel and chromium
compounds, Cancer Res. 7
(1985) 1527–1533.
120 R.K. Sahu, S.P.
Katsifis, P.L. Kinney, N.T. Christie, Effects
of nickel sulfate, lead sulfate,
and sodium arsenite alone and
with UV light on sister
chromatid exchanges in cultured
human lymphocytes, J. Mol.
Toxicol. 2 (1989) 129–136.
121 F.Z. Arrouijal, H.F.
Hildebrand, H. Vophi, D. Marzin,
Genotoxic activity of nickel
subsulphide alpha-Ni3S2,
Mutagenesis 5 (1990)
583–589.
122 S.R. Patierno, M.
Sugiyama, J.P. Basilion, M. Costa,
Preferential DNA–protein
crosslinking by NiCl2 in
magnesium-insoluble regions
of fractionated Chinese
hamster ovary cell
chromatin, Cancer Res. 45 (1985) 5787–
5794.
K.S.
Kasprzak et al. / Mutation Research 533 (2003) 67–97 91
123 K.S. Kasprzak, The role
of oxidative damage in metal
carcinogenicity, Chem. Res.
Toxicol. 4 (1991) 604–615.
124 S. Zienolddiny, D.
Ryberg, A. Haugen, Induction of
microsatellite mutations by
oxidative agents in human lung
cancer cell lines,
Carcinogenesis (2000) 1521–1526.
125 S.M. Chiocca, D.A.
Sterner, N.W. Biggart, E.C. Murphy
Jr., Nickel mutagenesis:
alteration of the MuSVts110
thermosensitive splicing
phenotype by a nickel-induced
duplication of the 3_ splice site, Mol. Carcinog. 4 (1991)
61–71.
126 F.E. Rosetto, J.D.
Turnbull, E. Nieboer, Characterization of
nickel-induced mutations,
Sci. Total Environ. 148 (1994)
201–206.
127 K.G. Higinbotham, J.M.
Rice, B.A. Diwan, K.S. Kasprzak,
C.D. Reed, A.O. Perantoni,
GGT to GTT transversions in
codon 12 of the K-ras oncogene
in rat renal sarcomas
induced with nickel
subsulfide or nickel subsulfide/iron are
consistent with oxidative
damage to DNA, Cancer Res. 52
(1992) 4747–4751.
128 L.C. Harty, D.G. Guinee
Jr., W.D. Travis, W.P. Bennett,
J. Jett, T.V. Coby, H.
Tazelaar, V. Trastek, P. Pairolero,
L.A. Liotta, C.C. Harris,
N.E. Caporaso, p53 mutations and
occupational exposures in a
surgical series of lung cancers,
Cancer Epidemiol. Biomark.
Prev. 5 (1996) 997–1003.
129 N.W. Biggart, M. Costa,
Assessment of the uptake and
mutagenicity of nickel
chloride in Salmonella tester strains,
Mutat. Res. 175 (1986)
209–215.
130 B. Kargacin, C.B. Klein,
M. Costa, Mutagenic responses of
nickel oxides and nickel sulfides
in Chinese hamster V79
cell lines as the
xanthine-guanine phosphoribosyl transferase
locus, Mutat. Res. 300 (1993) 63–72.
131 Y-W. Lee, C.B. Klein, B. Kargacin, K. Salnikow,
J.
Kitahara, K. Dowjat, A.
Zhitkovich, N.T. Christie, M. Costa,
Carcinogenic nickel silences
gene expression by chromatin
condensation and DNA
methylation: a new model for
epigenetic carcinogens, Mol.
Cell. Biol. 15 (1995) 2547–
2557.
132 R. Rodriguez-Arnaiz, P.
Ramos, Mutagenicity of nickel
sulpate in Drosophila
melanogaster, Mutat. Res. 170
(1986)
115–117.
133 J.S. Dubins, J.M.
LaVelle, Nickel(II) genotoxicity: potentiation
of mutagenesis of simple
alkylating agents, Mutat.
Res. 162 (1986) 187–199.
134 C. Mayer, R.G. Klein, H.
Wesch, P. Schmezer, Nickel
subsulfide is genotoxic in
vitro but shows no mutagenic
potential in respiratory
tract tissues of Big Blue rats and
Muta Mouse mice in vivo
after inhalation, Mutat Res. 420
(1998) 85–98.
135 N.T. Christie, D.M.
Tummolo, C.B. Klein, T.G. Rossman,
Role of Ni(II) in mutation,
in: E. Nieboer, J.O. Nriagu (Eds.),
Nickel and Human Health:
Current Perspectives, Wiley, New
York, 1992, pp. 305–317.
136 N.W. Biggart, G.E.
Gallick, E.C. Murphy Jr., Nickelinduced
heritable alterations in
retroviral transforming gene
expression, J. Virol. 61 (1987) 2378–2388.
137 L. Broday, W. Peng, M.H. Kuo, K. Salnikow, M.
Zoroddu,
M. Costa, Nickel compounds
are novel inhibitors of histone
H4 acetylation, Cancer Res.
60 (2000) 238–241.
138 F.W. Sunderman Jr., S.M.
Hopfer, M. C Reid, S. K Shen,
C.B. Kevorkian,
Erythropoietin-mediated erythrocytosis in
rodents after intrarenal
injection of nickel subsulfide, Yale
J. Biol. Med. 55 (1982)
123–136.
139 F.W. Sunderman Jr., K.S.
McCully, S.M. Hopfer, Association
between erythrocytosis and
renal cancers in
rats following intrarenal
injection of nickel compounds,
Carcinogenesis 5 (1984)
1511–1517.
140 G.L. Semenza, G.L. Wang,
A nuclear factor induced
by hypoxia via de novo
protein synthesis binds to the
human erythropoietin gene
enhancer at a site required for
transcriptional activation, Mol. Cell. Biol. 12
(1992) 5447–
5454.
141 K.K. Graven, R.J. McDonald, H.W. Farber, Hypoxia
regulation of endothelial glyceraldehyde-3-phosphate
dehydrogenase,
Am. J. Physiol. 43 (1998)
347–355.
142 K. Salnikow, M.W.
Blagosklonny, H. Ryan, R. Johnson,
M. Costa, Carcinogenic
nickel induces genes involved in
hypoxic stress, Cancer Res.
60 (2000) 38–41.
143 A. Namiki, E. Brogi, M.
Kearney, E.A. Kim, T. Wu, T.
Couffinhal, L. Varticovski,
J.M. Isner, Hypoxia induces
vascular endothelial growth
factor in cultured human
endothelial cells, J. Biol.
Chem. 270 (1995) 31189–31195.
144 D. Zhou, K. Salnikow, M.
Costa, Cap43, a novel gene
specifically induced by Ni2+ compounds, Cancer Res. 58
(1998) 2182–2189.
145 K. Salnikow, W.G. An, G.
Melillo, M.V. Blagosklonny,
M. Costa, Nickel-induced
transformation shifts the
balance between HIF-1_ and p53 transcription factors,
Carcinogenesis 20 (1999)
1819–1823.
146 G.L. Semenza, Expression
of hypoxia-inducible factor 1:
mechanisms and consequences,
Biochem. Pharmacol. 59
(2000) 47–53.
147 G.L. Semenza, HIF-1, O2, and the
3 PHDs: how animal
cells signal hypoxia to the
nucleus, Cell 107 (2001) 1–3.
148 P. Carmeliet, Y. Dor,
J.M. Herbert, D. Fukumura, K.
Brusselmans, M. Dewerchin,
M. Neeman, F. Bono, R.
Abramovitch, P. Maxwell,
C.J. Koch, P. Ratcliffe, L. Moons,
R.K. Jain, D. Collen, E.
Keshet, Role of HIF-1_ in
hypoxia-mediated apoptosis,
cell proliferation and tumour
angiogenesis, Nature 394
(1998) 485–490.
149 J. Folkman, Tumor
angiogenesis: therapeutic implications,
N. Engl. J. Med. 285 (1971)
1182–1186.
150 G.L. Semenza, P.H. Roth,
H.-M. Fang, G.L. Wang, Transcriptional
regulation of genes encoding
glycolitic enzymes
by hypoxia-inducible factor
1, J. Biol. Chem. 269 (1994)
23757–23763.
151 A. Rolfs, I. Kvietikova, M.
Gassmann, R.H. Wenger,
Oxygen-regulated transferrin
expression is mediated by
hypoxia-inducible factor-1,
J. Biol. Chem. 272 (1997)
20055–20062.
152 G. Melillo, T. Musso, A.
Sica, L.S. Taylor, G.W. Cox, L.
Varesio, A
hypoxia-responsive element mediates a novel
pathway of activation of the
inducible nitric oxide synthase
promoter, J. Exp. Med. 182
(1995) 1683–1693.
153 M. Garayoa, A. Martinez,
S. Lee, R. Pio, W.G. An,
L. Neckers, J. Trepel, L.M.
Montuenga, H. Ryan, R.
92 K.S. Kasprzak et al. /
Mutation Research 533 (2003) 67–97
Johnson, M. Gassmann, F.
Cuttitta, Hypoxia-inducible
factor-1 (HIF-1)
up-regulates adrenomedullin expression in
human tumor cell lines
during oxygen deprivation: a possible
promotion mechanism of
carcinogenesis, Mol. Endocrinol.
14 (2000) 848–862.
154 K. Salnikow, T.
Davidson, M. Costa, The role of hypoxiainducible
signaling pathway in nickel
carcinogenesis,
Environ. Health Perspect.
110 (Suppl. 5) (2002) 831–834.
155 K. Salnikow, T.
Davidson, T. Kluz, H. Chen, D. Zhou, M.
Costa, GeneChip analysis of
signaling pathways effected by
nickel, J. Environ. Monitor. 5 (2003) 1–5.
156 K. Salnikow, T.
Davidson, Q. Zhang, L.C. Chen, W. Su, M.
Costa, The involvement of
hypoxia-inducible transcription
factor-1-dependent pathway
in nickel carcinogenesis, Cancer
Res. 63 (2003) 3524–3530.
157 K. Salnikow, W. Su, M.V.
Blagosklonny, M. Costa,
Carcinogenic metals induce
hypoxia-inducible factorstimulated
transcription by reactive
oxygen speciesindependent
mechanism, Cancer Res. 60
(2000) 3375–3378.
158 C.H. Sutter, E.
Laughner, G.L. Semenza, Hypoxia-inducible
factor 1_ protein expression is controlled by oxygenregulated
ubiqitination that is
disrupted by deletions and
missense mutations, Proc. Natl. Acad. Sci. U.S.A. 97 (2000)
4748–4753.
159 U.R. Jewell, I. Kvietikova,
A. Scheid, C. Bauer, R.H.
Wenger, M. Gassmann,
Induction of HIF-1alpha in response
to hypoxia is instantaneous,
FASEB J. 15 (2001) 1312–1314.
160 M. Ivan, K. Kondo, H. Yang,
W. Kim, J. Valiando, M.
Ohh, A. Salic, J.M. Asara, W.S.
Lane, W.G.J. Kaelin,
HIFalpha targeted for
VHL-mediated destruction by proline
hydroxylation: implications
for O2 sensing, Science 292
(2001) 464–468.
161 P. Jaakkola, D.R. Mole,
Y.M. Tian, M.I. Wilson, J.
Gielbert, S.J. Gaskell, A.
Kriegsheim, H.F. Hebestreit,
M. Mukherji, C.J. Schofield,
P.H. Maxwell, C.W. Pugh,
P.J. Ratcliffe, Targeting of
HIF-alpha to the von
Hippel–Lindau ubiquitylation
complex by O2-regulated
prolyl hydroxylation, Science 292 (2001) 468–472.
162 F. Yu, S.B. White, Q.
Zhao, F.S. Lee, HIF-1_ binding
to
VHL is regulated by
stimulus-sensitive proline hydroxylation,
Proc. Natl. Acad. Sci.
U.S.A. 98 (2001) 9630–9635.
163 M. Ohh, C.W. Park, M.
Ivan, M.A. Hoffman, T.-Y. Kim, L.E.
Huang, N. Pavletich, V.
Chau, W.G. Kaelin, Ubiquination
of hypoxia-inducible factor
requires direct binding to the
beta-domain of the von
Hippel–Lindau protein, Nat. Cell
Biol. 2 (2000) 423–427.
164 L.A. McNeill, K.S.
Hewitson, T.D. Claridge, J.F. Seibel,
L.E. Horsfall, C.J.
Schofield, Hypoxia-inducible factor
asparaginyl hydroxylase
(FIH-1) catalyses hydroxylation at
the beta-carbon of
asparagine-803, Biochem J. 367 (2002)
571–575.
165 D. Lando, D.J. Peet,
D.A. Whelan, J.J. Gorman, M.L.
Whitelaw, Asparagine
hydroxylation of the HIF transactivation
domain a hypoxic switch, Science
295 (2002)
858–861.
166 K. Salnikow, S.
Cosentino, C. Klein, M. Costa, Loss
of thrombospondin
transcriptional activity in nickeltransformed
cells, Mol. Cell. Biol. 14
(1994) 851–858.
167 K. Salnikow, S. Wang, M.
Costa, Induction of activating
transcription factor I by
nickel and its role as a negative
regulator of thrombospondin
I gene expression, Cancer Res.
57 (1997) 5060–5066.
168 A.J. Shaywitz, M.E.
Greenberg, CREB: a stimulus-induced
transcription factor
activated by a diverse array of
extracellular signals, Annu.
Rev. Biochem. 68 (1999) 821–
861.
169 M. Goebeler, G.
Meinardus-Hager, J. Roth, S. Goerdt, C.
Sorg, Nickel chloride and
cobalt chloride, two common
contact sensitizers,
directly induce expression of intercellular
adhesion molecule-1 (ICAM-1),
vascular cell adhesion
molecule-1 (VCAM-1), and
endothelial leukocyte adhesion
molecule (ELAM-1) by
endothelial cells, J. Invest. Dermatol.
100 (1993) 759–765.
170 M. Goebeler, J. Roth,
E.B. Brocker, C. Sorg, K. Schulze-
Osthoff, Activation of
nuclear factor-kappa B and gene
expression in human
endothelial cells by the common
haptens nickel and cobalt, J.
Immunol. 155 (1995) 2459–
2467.
171 T. Hernandez-Boussard,
P. Rodriguez-Tome, R. Montesano,
P. Hainaut, IARC p53
mutation database: a relational
database to compile and
analyze p53 mutations in human
tumors and cell lines, Hum.
Mutat. 14 (1999) 1–8.
172 L. Maehle, R.A. Metcalf,
D. Ryberg, W.P. Bennett,
C.C. Harris, A. Haugen,
Altered p53 gene structure and
expression in human
epithelial cells after exposure to nickel,
Cancer Res. 52 (1992)
218–221.
173 C.M. Weghorst, K.H.
Dragnev, G.S. Buzard, K.L. Thorne,
G.F. Vandeborne, K.A.
Vincent, J.M. Rice, Low incidence of
point mutations detected in
the p53 tumor suppressor gene
from chemically induced rat
renal mesenchymal tumors,
Cancer Res. 154 (1994) 215–219.
174 Y-H. Shiao,
S-H. Lee, K.S. Kasprzak, Cell cycle arrest,
apoptosis and p53 expression
in nickel (II) acetate-treated
Chinese hamster ovary cells,
Carcinogenesis 19 (1998)
1203–1207.
175 W.G. An, M. Kanekal, M.C.
Simon, E. Maltepe, M.V.
Blagosklonny, L.M. Neckers,
Stabilization of wild-type p53
by hypoxia-inducible factor
1alpha, Nature 392 (1998) 405–
408.
176 W.H. Lee, R. Bookstein,
E.Y. Lee, Studies on the human
retinoblastoma
susceptibility gene, J. Cell. Biochem. 38
(1988) 213–227.
177 T. Kouzarides,
Transcriptional control by the retinoblastoma
protein, Semin. Cancer Biol.
6 (1995) 91–98.
178 X. Lin, W.K. Dowjat, M.
Costa, Nickel-induced transformation
of human cells causes loss
of the phosphorylation
of the retinoblastoma
protein, Cancer Res. 54 (1994) 2751–
2754.
179 A.S. Rani, D. Qu, M.K.
Sidhu, F. Panagakos, V. Shah,
K.M. Klein, N. Brown, S.
Pathak, S. Kumar, Transformation
of immortal, non-tumorigenic
osteoblast-like
human osteosarcoma cells to
the tumorigenic phenotype by
nickel sulfate,
Carcinogenesis 14 (1993) 947–953.
180 X. Lin, M. Costa,
Transformation of human osteoblasts to
anchorage-independent growth
by insoluble nickel particles,
Environ. Health Perspect.
102 (Suppl. 3) (1994) 289–292.
K.S.
Kasprzak et al. / Mutation Research 533 (2003) 67–97 93
181 A.C. Miller, W.F.
Blakely, D. Livengood, T. Whittaker,
J. Xu, J.W. Ejnik, M.M.
Hamilton, E. Parlette, T.S.
John, H.M. Gerstenberg, H.
Hsu, Transformation of human
osteoblast cells to the tumorigenic
phenotype by depleted
uranium-uranyl chloride, Environ. Health Perspect. 106
(1998) 465–471.
182 F. Trapasso, A.
Krakowiak, R. Cesari, J. Arkles, S.
Yendamuri, H. Ishii, A.
Vecchione, T. Kuroki, P.
Bieganowski, H.C. Pace, K.
Huebner, C.M. Croce, C.
Brenner, Designed FHIT
alleles establish that Fhit-induced
apoptosis in cancer cells is
limited by substrate binding,
Proc. Natl. Acad. Sci.
U.S.A. 100 (2003) 1592–1597.
183 R. Kowara, A. Karaczyn,
M.J. Fivash, K.S. Kasprzak, In
vitro inhibition of the
enzymatic activity of tumor suppressor
FHIT gene product by carcinogenic transition metals,
Chem.
Res. Toxicol. 15 (2002)
319–325.
184 R. Kowara, K. Salnikow,
B.A. Diwan, R.M. Bare, M.P.
Waalkes, K.S. Kasprzak,
Reduced Fhit protein expression in
nickel-transformed mouse
cells and in nickel-induced murine
sarcomas, Mol. Cell.
Biochem., in press.
185 S.H. Lee, Y.-H. Shiao,
S. Plisov, K.S. Kasprzak, Nickel(II)
acetate-treated Chinese
hamster ovary cells differentially
express vimentin, hSNF2H
homologue, and H ferritin,
Biochem. Biophys. Res.
Commun. 258 (1999) 592–595.
186 G. Lumb, F.W. Sunderman
Sr., The mechanism of malignant
tumor induction by nickel
subsulfide, Ann. Clin. Lab. Sci.
18 (1988) 353–366.
187 L.G. Burns, C.L.
Peterson, Protein complexes for remodeling
chromatin, Biochem. Biophys.
Acta 1350 (1997) 159–168.
188 R.Y.S. Cheng, A. Zhao,
W.G. Alvord, D. Powell, R.M. Bare,
A. Masuda, T. Takahashi,
L.M. Anderson, K.S. Kasprzak,
Gene expression
dose–response changes in microarrays
after exposure of human
peripheral lung epithelial cells to
nickel(II), Toxicol. Appl.
Pharmacol. 191 (2003) 22–39.
189 S.A. McDowell, K.
Gammon, C.J. Bachurski, J.S. Wiesdt,
J.E. Leikauf, D.R. Prows, G.D.
Leikauf, Differential gene
expression in the initiation
and progression of nickel-induced
acute lung injury, Am. J.
Respir. Cell Mol. Biol. 23 (2000)
466–474.
190 M.A. Sirover, L.A. Loeb,
Infidelity of DNA synthesis
in vitro: screening for
potential metal mutagens and
carcinogens, Science 194
(1976) 1434–1436.
191 A. Hartwig, L.H.F.
Mullenders, R. Schlepegrell, U. Kasten,
D. Beyersmann, Nickel(II)
interferes with the incision step
in nucleotide excision
repair in mammalian cells, Cancer 54
(1994) 4045–4051.
192 A. Hartwig,
Carcinogenicity of metal compounds: possible
role of DNA repair
inhibition, Toxicol. Lett. 28 (1998) 102–
103.
193 F. Iwitzki, R.
Schlepegrell, U. Eichhorn, B. Kaina, D.
Beyersmann, A. Hartwig,
Nickel(II) inhibits the repair of
O6-methylguanine
in mammalian cells, Arch. Toxicol. 72
(1998) 681–689.
194 T. Schwerdtle, A.
Seidel, A. Hartwig, Effect of soluble and
particulate nickel compounds
on the formation and repair
of stable benzoapyrene
DNA adducts in human lung cells,
Carcinogenesis 23 (2002)
47–53.
195 A. Hartwig, M. Asmuss,
H. Blessing, S. Hoffmann, G.
Jahnke, S. Khandelwal, A.
Pelzer, A. Burkle, Interference
by toxic metal ions with
zinc-dependent proteins involved
in maintaining genomic
sttability, Food Chem. Toxicol. 40
(2002) 1179–1184.
196 W. Bal, T. Schwerdtle,
A. Hartwig, Mechanism of nickel
assault on the zinc finger
of DNA repair protein XPA, Chem.
Res. Toxicol. 16 (2003)
242–248.
197 A. Hartwig, M. Asmuss, I.
Ehleben, U. Herzer, D. Kostelac,
A. Pelzer, T. Schwerdtle, A.
Burkle, Interference by toxic
metal ions with DNA repair
processes and cell cycle
control: molecular
mechanisms, Environ. Health Perspect.
110 (Suppl. 5) (2002)
797–799.
198 K.S. Kasprzak, K.
Bialkowski, Inhibition of antimutagenic
enzymes, 8-oxo-dGTPases, J. Inorg. Biochem. 79 (2000)
231–236.
199 T. Pozzan, R. Rizzuto,
P. Volpe, J. Meldolesi, Molecular and
cellular physiology of
intracellular calcium stores, Physiol.
Rev. 74 (1994) 595–636.
200 L.B. Rosen, D.D. Ginty,
M.E. Greenberg, Calcium regulation
of gene expression, Adv. Second
Messenger Phosphoprotein
Res. 30 (1995) 225–253.
201 P. Nicotera, S.
Orrenius, The role of calcium in apoptosis,
Cell Calcium 23 (1988)
173–180.
202 K.S. Kasprzak, M.P.
Waalkes, The role of calcium,
magnesium, and zinc in
carcinogenesis, in: L.A. Poirier,
P.M. Newberne, M.W. Pariza,
(Eds.), Essential Nutrients
in Carcinogenesis, Plenum
Press, New York, 1986, pp.
497–515.
203 S.H.H. Swierenga, J.F.
Whitfield, D.J. Gillan, Alteration by
malignant transformation of
the calcium requirements for
cell proliferation in vitro,
J. Natl. Cancer Inst. 57 (1976)
125–129.
204 S.H.H. Swierenga, J.F.
Whitfield, A.L. Boynton, Age-related
and carcinogen-induced
alterations of the extracellular
growth factor requirements
for cell proliferation in vitro, J.
Cell. Physiol. 94 (1978)
171–180.
205 K. Salnikow, T. Kluz, M.
Costa, Role of Ca2+ in
the regulation of
nickel-inducible Cap43 gene expression,
Toxicol. Appl. Pharmacol.
160 (1999) 127–132.
206 T. Funakoshi, T. Inoue,
H. Shimada, S. Kojima, The
mechanism of nickel uptake
by rat primary hepatocyte
cultures: role of calcium channels,
Toxicology 124 (1997)
21–26.
207 G.W. Zamponi, E.
Bourinet, T.P. Snutch, Nickel block
of a family of neuronal
calcium channels: subtype- and
subunit-dependent action at
multiple sites, J. Membrane Biol.
151 (1996) 77–90.
208 J.B. Smith, S.D. Dwyer,
L. Smith, Cadmium evokes
inositol polyphosphate
formation and calcium mobilization.
Evidence for a cell surface
receptor that cadmium stimulates
and zinc antagonizes, J.
Biol. Chem. 264 (1989) 7115–7118.
209 J. Sainte-Marie, V. Lafont, E.I. Pecheur, J. Favero,
J.R.
Philipot, A. Bienvenue,
Transferrin receptor functions as
a signal-transduction
molecule for its own recycling via
increases in the internal Ca2+ concentration, Eur. J.
Biochem. 250 (1997) 689–697.
94 K.S. Kasprzak et al. /
Mutation Research 533 (2003) 67–97
210 J.D. Glennon, B. Sarkar,
Nickel(II) transport in human blood
serum: studies of
nickel(II)-binding human albumin and to
native-sequence peptide, and
ternary complex formation with
L-histidine, Biochem. J. 203
(1982) 15–23.
211 D.M. Templeton, B.
Sarkar, Peptide and carbohydrate
complexes in human kidney,
Biochem. J. 230 (1985) 35–42.
212 P.F. Predki, C. Harford,
P. Brar, B. Sarkar, Further
characterization of the
N-terminal copper(II)- and nickel(II)-
binding motif of proteins.
Studies of metal binding to
chicken serum albumin and
the native sequence peptide,
Biochem. J. 287 (1992)
211–215.
213 L.W. Donaldson, N.R.
Skrynnikov, W.Y. Choy, D.R.
Muhandiram, B. Sarkar, J.D.
Forman-Kay, L.E. Kay,
Structural characterization
of proteins with an attached
ATCUN motif by paramagnetic
relaxation enhancement
NMR spectroscopy, J. Am. Chem. Soc. 123 (2001) 9843–
9847.
214 J. Crowe, H. Dobeli, R.
Gentz, E. Hochuli, D. Stuber,
K. Henco, 6xHis-Ni-NTA
chromatography as a superior
technique in recombinant
protein expression/purification, in:
A.J. Harwood (Ed.), Methods
in Molecular Biology, Humana
Press, Totowa, NJ, 1994, pp.
371–387.
215 J.W. Bauman, J. Liu,
C.D. Klaassen, Production of
metallothionein and
heat-shock proteins in response to
metals, Fundam. Appl. Toxicol. 21 (1993) 15–22.
216 M. Van Soestbergen, F.W.
Sunderman Jr., 63Ni complexes
in rabbit serum and urine
after injection of 63NiCl2, Clin.
Chem. 18 (1972) 1478–1484.
217 N. Asato, M. van
Soestbergen, F.W. Sunderman Jr., Binding
of 63Ni(II) to ultrafiltrable
constituents of rabbit serum in
vivo and in vitro, Clin.
Chem. 21 (1975) 521–527.
218 W.M. Callan, F.W.
Sunderman Jr., Species variations in
binding of 63Ni(II) by
serum albumin, Res. Commun. Chem.
Pathol. Pharmacol. 5 (1973)
459–474.
219 J.P. Laussac, B. Sarkar,
Characterization of the copper(II)-
and nickel(II)-transport
site of human serum albumin.
Studies of copper(II) and
nickel(II) binding to peptide 1–24
of human serum albumin by 13C and 1H NMR
spectroscopy,
Biochemistry 23 (1984)
2832–2838.
220 W. Bal, J.
Christodoulou, P.J. Sadler, A. Tucker, Multi-metal
binding site of serum
albumin, J. Inorg. Biochem. 70 (1998)
33–39.
221 K. Nakamuro, Y. Sayato,
Chemical forms of nickel in rat
plasma, kidney cytosol, and
urine after administration of
63NiCl2, Eisei Kagaku 35 (1989) 19–29.
222 S. Nomoto, M.D. McNeely,
F.W. Sunderman Jr., Isolation of
a nickel _2-macroglobulin from rabbit
serum, Biochemistry
10 (1971) 1647–1651.
223 S. Nomoto, F.W.
Sunderman Jr., Presence of nickel in
alpha-2 macroglobulin
isolated from human serum by high
performance liquid
chromatography, Ann. Clin. Lab. Sci. 18
(1988) 78–84.
224 M.I. Decsy, F.W.
Sunderman Jr., Binding of 63Ni to rabbit
serum _2-macroglobulin in vivo and
in vitro, Bioinorg.
Chem. 3 (1974) 87–94.
225 A.W. Abdulwajid, B.
Sarkar, Nickel-sequestering renal
glycoprotein, Proc. Natl.
Acad. Sci. U.S.A. 80 (1983) 4509–
4512.
226 M.C. Herlant-Peers, H.F.
Hildebrand, J.P. Kerckaert, In
vitro and in vivo
incorporation of 63Ni(II) into lung and
liver subcellular fractions
of Balb/C mice, Carcinogenesis 4
(1983) 387–392.
227 A. Oskarsson, H. Tjalve,
Binding of 63Ni by cellular
constituents in some tissues
of mice after the administration
of 63NiCl2, and 63Ni(CO)4, Acta
Pharmacol. Toxicol. 45
(1979) 306–314.
228 F.W. Sunderman Jr., E.R.
Costa, C. Fraser, G. Hui, J.L.
Levine, T.P.H. Tse, 63Ni-constituents
in renal cytosol of rats
after injection of 63NiCl2, Ann. Clin.
Lab. Sci. 11 (1981)
488–496.
229 F.W. Sunderman Jr., B.L.
Mangold, S.H.Y. Wong, S.K.
Shen, M.C. Reid, I. Jansson,
High-performance sizeexclusion
chromatography of 63Ni-constituents
in renal
cytosol and microsomes from 63NiCl2 treated
rats, Res.
Commun. Chem. Pathol.
Pharmacol. 39 (1983) 477–492.
230 D.M. Templeton, B.
Sarkar, Nickel binding to the C-terminal
tryptic fragment of a
peptide from human kidney, Biochem.
Biophys. Acta 884 (1986)
382–386.
231 C. Harford, B. Sarkar,
Neuromedin C binds Cu(II) and Ni(II)
via the ACTUN motif:
implications for the CNS and cancer
growth, Biochem. Biophys.
Res. Commun. 209 (1995) 877–
882.
232 E. Nieboer, A.R.
Stafford, S.L. Evans, J. Dolovich, in: F.W.
Sunderman Jr., (Ed.), Nickel
in the Human Environment,
Oxford University Press,
Oxford, 1984, pp. 321–331.
233 K. Kondo, T. Ozaki, Y.
Nakamura, S. Sakiyama, DAN gene
product has an affinity for
Ni2+,
Biochem. Biophys. Res.
Commun. 216
(1995) 209–215.
234 T. Ozaki, Y. Nakamura,
H. Enomoto, M. Hirose, S.
Sakiyama, Overexpression of
DAN gene product in normal
rat fibroblasts causes a
retardation of the entry into the S
phase, Cancer Res. 55 (1995)
895–900.
235 F.W. Sunderman Jr., A.H.
Varghese, O.S. Kroftova, S.
Grbac-Ivankovic, J. Kotyza,
A.K. Datta, M. Davis, W.
Bal, K.S. Kasprzak,
Characterization of pNiXa, a serpin of
Xenopus laevis oocytes and
embryos, and its histidine-rich,
Ni(II)-binding domain, Mol. Reprod. Dev. 44 (1996)
507–
524.
236 J. Kotyza, A.H. Varghese, G. Korza, F.W.
Sunderman Jr.,
Interaction of serine
proteinases with pNiXa, a serpin from
Xenopus oocytes and embryos, Biochim. Biophys. Acta.
1382 (1998) 266–276.
237 K. Antonijczuk, O.S.
Kroftova, A.H. Varghese, A.
Antonijczuk, D.C. Henjum, G.
Korza, J. Ozols, F.W.
Sunderman Jr., The 40 kDa 63Ni(2+)-binding protein
(pNiXc) on western blots of Xenopus
laevis oocytes
and embryos is the monomer
of fructose-1,6-bisphosphate
aldolase A, Biochim.
Biophys. Acta. 1247 (1995) 81–89.
238 S. Grbac-Ivankovic, K.
Antonijczuk, A.H. Varghese, M.C.
Plowman, A. Antonijczuk, G.
Korza, J. Ozols, F.W.
Sunderman Jr., Lipovitellin
2 beta is the 31 kD Ni(2+)-
binding protein (pNiXb) in Xenopus
oocytes and embryos,
Mol. Reprod. Dev. 38 (1994)
256–263.
239 D. Gorlich, S. Prehn,
R.A. Laskey, E. Hartmann, Isolation
of a protein that is
essential for the first step of nuclear
protein import, Cell 79 (1994) 767–778.
K.S. Kasprzak et al. / Mutation Research 533 (2003)
67–97 95
240 H.C. Pace, P.N. Garrison, A.K. Robinson, L.D.
Barnes, A.
Draganescu, A. Rosler, G.M. Blackburn, Z.
Siprashvili, C.M.
Croce, K. Huebner, C.
Brenner, Genetic, biochemical, and
crystallographic
characterization of Fhit-substrate complexes
as the active signaling form
of Fhit, Proc. Natl. Acad. Sci.
U.S.A. 95 (1998) 5484–5489.
241 M.A. Zoroddu, T.
Kowalik-Jankowska, H. Kozlowski,
K. Salnikow, M. Costa,
Ni(II) and Cu(II) binding with
a 14-aminoacid sequence of
Cap43 protein, TRSRSHTSEGTRSR,
J. Inorg. Biochem. 84 (2001)
47–54.
242 S. Oshiro, K. Nozawa, M.
Hori, C. Zhang, Y. Hashimoto,
S. Kitajima, K. Kawamura,
Modulation of iron regulatory
protein-1 by various metals,
Biochem. Biophys. Res.
Commun. 290 (2002) 213–218.
243 K.S. Kasprzak, M.P. Waalkes, L.A. Poirier,
Antagonism by
essential divalent metals
and amino acids of nickel(II)–DNA
binding in vitro, Toxicol.
Appl. Pharmacol. 82 (1986) 336–
343.
244 W. Bal, H. Kozlowski, K.S.
Kasprzak, Molecular models in
nickel carcinogenesis, J.
Inorg. Biochem. 79 (2000) 213–
218.
245 W. Bal, M.
Jezowska-Bojczuk, K.S. Kasprzak, Binding of
Ni(II) and Cu(II) to the
N-terminal sequence of human
protamine HP2, Chem. Res.
Toxicol. 10 (1997) 906–914.
246 W. Bal, J. Lukszo, M.
Jezowska-Bojczuk, K.S. Kasprzak,
Interactions of nickel(II)
with histones. Stability and solution
structure of complexes with
CH3CO-Cys-Ala-Ile-His-NH2,
a putative metal binding
sequence of histone H3, Chem.
Res. Toxicol. 8 (1995)
683–692.
247 K. Luger, A.W. Mader,
R.K. Richmond, D.F. Sargent, T.J.
Richmond, Crystal structure
of the nucleosome core particle
at 2.8 Å resolution, Nature
389 (1997) 251–260.
248 W. Bal, J. Lukszo, K.
Bialkowski, K.S. Kasprzak, Interactions
of nickel(II) with histones:
interactions of Ni(II) with
CH3CO-Thr-Glu-Ser-His-His-Lys-NH2, a
peptide modeling
the potential metal binding
site in the “C-tail” region of
histone H2A, Chem. Res.
Toxicol. 11 (1998) 1014–1023.
249 M.A. Zoroddu, L.
Schinocca, T. Kowalik-Jankowska, H.
Kozlowski, K. Salnikow, M.
Costa, Molecular mechanisms
in nickel carcinogenesis:
modeling Ni(II) binding site in
histone H4, Environ. Health
Perspect. 110 (Suppl. 5) (2002)
719–723.
250 W. Bal, V. Karantza,
E.N. Moudrianakis, K.S. Kasprzak,
Interaction of nickel(II)
with histones: in vitro binding of
Ni(II) to the core histone
tetramer, Arch. Biochem. Biophys.
364 (1999) 161–166.
251 A. Krezel, W.
Szczepanik, M. Sokolowska, M. Jezowska-
Bojczuk, W. Bal,
Correlations between complexation modes
and redox activities of
Ni(II)–GSH complexes, Chem. Res.
Toxicol. 16 (2003) 855–864.
252 W. Bal, R. Liang, J.
Lukszo, S.H. Lee, M. Dizdaroglu, K.S.
Kasprzak, Nickel(II)
specifically cleaves the C-terminal tail
of the major variant of
histone H2A and forms oxidative
damage-mediating complex
with the cleaved-off octapeptide,
Chem. Res. Toxicol. 13
(2000) 616–624.
253 J. Ausio, D.W. Abbott,
The many tales of a tail: carboxyterminal
tail heterogeneity
specializes histone H2A variants
for defined chromatin
function, Biochemistry 41 (2002)
5945–5949.
254 K.S. Kasprzak, Possible
role of oxidative damage in metalinduced
carcinogenesis, Cancer
Invest. 13 (1995) 411–430.
255 K.S. Kasprzak, Oxidative
DNA and protein damage in
metal-induced toxicity and
carcinogenesis, Free Radic. Biol.
Med. 32 (2002) 958–967.
256 X. Huang, C.B. Klein, M.
Costa, Crystalline Ni3S2
specifically enhances the
formation of oxidants in the
nuclei of CHO cells as
detected by dichlorofluorescein,
Carcinogenesis 15 (1994)
545–548.
257 K. Salnikow, M. Gao, V.
Voitkun, X. Huang, M. Costa,
Altered oxidative stress
responses in nickel resistant
mammalian cells, Cancer Res.
54 (1994) 6407–6412.
258 M.C. Herrero, C.
Alvarez, J. Cartana, C. Blade, L. Arola,
Nickel effects on hepatic
amino acids, Res. Commun. Chem.
Pathol. Pharmacol. 79 (1993)
243–248.
259 W. Li, Y. Zhao, I.N.
Chou, Alterations in cytoskeletal protein
sulfhydryls and cellular
glutathione in cultured cells exposed
to cadmium and nickel ions,
Toxicology 77 (1993) 65–79.
260 D.W. Margerum, S.L.
Anliker, Nickel(III) chemistry and
properties of the peptide
complexes of Ni(II) and Ni(III), in:
J.R. Lancaster (Ed.), The
Bioinorganic Chemistry of Nickel,
VCH, New York, 1988, pp.
29–51.
261 K.S. Kasprzak, Oxidative
DNA damage in metal-induced
carcinogenesis, in: L.W.
Chang, L. Magos, T. Suzuki, (Eds.),
Toxicology of Metals, Lewis
Publishers, Boca Raton, 1996,
pp. 299–320.
262 J.R. Landolph, Role of
free radicals in metal-induced
carcinogenesis, in: H.
Sigel, A. Sigel (Eds.), Metal Ions
in Biological Systems, vol.
36, Marcel Dekker, New York,
1999, pp. 445–483.
263 K.S. Kasprzak, G.S.
Buzard, The role of metals in oxidative
damage and redox cell
signaling derangement, in: J.
Koropatnick, R. Zalups
(Eds.), Molecular Biology and
Toxicology of Metals, Taylor
and Francis, London, 2000,
pp. 477–527.
264 D. Costa, J. Guignard,
H. Pezerat, Production of free radicals
arising from the surface
activity of minerals and oxygen. Part
II. Arsenides, sulfides, and
sulfoarsenides of iron, nickel,
and copper, Toxicol. Ind.
Health 5 (1989) 1079–1097.
265 J.E. Lee, R.B.
Ciccarelli, K.W. Wetterhahn Jenette,
Solubilization of the
carcinogen nickel subsulfide and
its interaction with
deoxyribonucleic acid and protein,
Biochemistry 21 (1982)
771–778.
266 L.K. Tkeshelashvili,
T.M. Reid, T.J. McBride, L.A. Loeb,
Nickel induces a signature
mutation for oxygen free radical
damage, Cancer Res. 53
(1993) 4172–4174.
267 W. Bal, J. Lukszo, K.S.
Kasprzak, Mediation of oxidative
DNA damage by nickel(II) and
copper(II) complexes with
the N-terminal sequence of
human protamine HP2, Chem.
Res. Toxicol. 10 (1997)
915–921.
268 W. Bal, J. Wojcik, M.
Maciejczyk, P. Grochowski, K.S.
Kasprzak, Induction of a
secondary structure in the
N-terminal pentadecapeptide
of human protamine HP2
through Ni(II) coordination.
An NMR study, Chem. Res.
Toxicol. 13 (2000) 823–830.
96 K.S. Kasprzak et al. /
Mutation Research 533 (2003) 67–97
269 E.R. Stadtman, Oxidation
of free amino acids and amino
acid residues in proteins by
radiolysis and by metal-catalyzed
reactions, Annu. Rev.
Biochem. 62 (1993) 797–821.
270 J.R. Requena, C.-C.
Chao, L.R. Levine, E.R. Stadtman,
Glutamic and aminoadipic
semialdehydes are the main
carbonyl products of
metal-catalyzed oxidation of proteins,
Proc. Natl. Acad. Sci.
U.S.A. 98 (2001) 69–74.
271 E.R. Stadtman, B.S.
Berlett, Fenton chemistry: amino acid
oxidation, J. Biol. Chem.
266 (1991) 17201–17211.
272 M.A. Zoroddu, T.
Kowalik-Jankowska, H. Kozlowski, H.
Molinari, K. Salnikow, L.
Broday, M. Costa, Interaction of
Ni(II) and Cu(II) with a
metal binding sequence of histone
H4: AKRHRK, a model of the
H4 tail, Biochim. Biophys.
Acta 1475 (2000) 163–168.
273 J.M. Berg, Potential
metal-binding domains in nucleic acid
binding proteins, Science
232 (1986) 485–487.
274 S.E. Bryan, Heavy metals
in the cell’s nucleus, in: G.L.
Eichhorn, L.G. Marzili
(Eds.), Metal Ions in Genetic
Information Transfer,
Elsevier, New York, 1981, pp. 87–101.
275 A. Leonard, Chromosome
damage in individuals exposed
to heavy metals, in: H.
Sigel (Ed.), Metal Ions in
Biological Systems, vol. 20,
Marcel Dekker, New York,
1986, pp. 229–258.
276 K.S. Kasprzak, L.A.
Poirier, Effects of calcium(II) and
magnesium(II) on nickel(II)
uptake and stimulation of
thymidine incorporation into
DNA in the lungs of strain A
mice, Carcinogenesis 6
(1985) 1819–1821.
277 A.V. Peskin, L. Shlyahova,
Cell nuclei generate DNAnicking
superoxide radicals, FEBS
Lett. 194 (1986) 317–
321.
278 M. Dizdaroglu, Chemical
determination of oxidative base
damage in DNA by gas
chromatography–mass spectrometry,
Methods Enzymol. 234 (1994)
3–16.
279 Z. Nackerdien, K.S.
Kasprzak, G. Rao, B. Halliwell, M.
Dizdaroglu, Nickel(II)- and
cobalt(II)-dependent damage by
hydrogen peroxide to the DNA
bases in isolated human
chromatin, Cancer Res. 51
(1991) 5837–5842.
280 X. Huang, J. Kitahara,
A. Zhitkovich, K. Dowjat, M.
Costa, Heterochromatic
proteins specifically enhance nickelinduced
8-oxo-dG formation,
Carcinogenesis 16 (1995)
1753–1759.
281 K.S. Kasprzak, K.
Bialkowski, Inhibition of antimutagenic
enzymes, 8-oxo-dGTPases, by
carcinogenic metals. Recent
developments, J. Inorg.
Biochem. 79 (2000) 231–236.
282 K.S. Kasprzak, B.A.
Diwan, J.M. Rice, M. Misra, C.W.
Riggs, R. Olinski, M.
Dizdaroglu, Nickel(II)-mediated
oxidative DNA base damage in
renal and hepatic chromatin
of pregnant rats and their
fetuses. Possible relevance to
carcinogenesis, Chem. Res.
Toxicol. 5 (1992) 809–815.
283 M. Misra, R. Olinski, M.
Dizdaroglu, K.S. Kasprzak,
Enhancement by L-histidine
of nickel(II)-induced DNA–
protein cross-linking and
oxidative DNA base damage in
the rat kidney, Chem. Res.
Toxicol. 6 (1993) 33–37.
284 K.S. Kasprzak, P.
Jaruga, T.H. Zastawny, S.L. North,
C.W. Riggs, R. Olinski, M.
Dizdaroglu, Oxidative DNA
base damage and its repair
in kidneys and livers of
nickel(II)-treated male F344
rats, Carcinogenesis 18 (1997)
271–277.
285 S. Kawanishi, S. Inoue,
S. Oikawa, N. Yamashita, S.
Toyokuni, M. Kawanishi, K.
Nishino, Oxidative DNA
damage in cultured cells and
rat lungs by carcinogenic nickel
compounds, Free Radic. Biol.
Med. 31 (2001) 108–116.
286 K.S. Kasprzak, M. Misra,
R.E. Rodriguez, S.L. North,
Nickel-induced oxidation of
renal DNA guanine residues in
vivo and in vitro,
Toxicologist 11 (1991) 233.
287 C.B. Klein, K. Frenkel,
M. Costa, The role of oxidative
processes in metal
carcinogenesis, Chem. Res. Toxicol. 4
(1991) 592–604.
288 A.M. Standeven, K.E.
Wetterhahn, Is there a role for
reactive oxygen species in
the mechanism of chromium(VI)
carcinogenesis? Chem. Res.
Toxicol. 4 (1991) 616–625.
289 K.S. Kasprzak, R.M.
Bare, In vitro polymerization of
histones by carcinogenic nickel
compounds, Carcinogenesis
10 (1989) 621–624.
290 U. Saplakoglu, M. Iscan,
M. Iscan, DNA single-strand
breakage in rat lung, liver
and kidney after single and
combined treatments of
nickel and cadmium, Mutat. Res.
394 (1997) 133–140.
291 Y. Cai, Z. Zhuang, DNA
damage in human peripheral
blood lymphocyte caused by
nickel and cadmium (Chin.),
Zhonghua Yu Fang Yi Xue Za
Zhi 33 (1999) 75–77.
292 R. Liang, S. Senturker,
X. Shi, W. Bal, M. Dizdaroglu, K.S.
Kasprzak, Effect of Ni(II)
and Cu(II) on DNA interaction
with the N-terminal sequence
of human protamine P2:
enhancement of binding and
mediation of oxidative DNA
strand scission and base
damage, Carcinogenesis 20 (1999)
893–898.
293 S. Kawanishi, S. Inoue,
K. Yamamoto, Site-specific DNA
damage by nickel(II) ion in
the presence of hydrogen
peroxide, Carcinogenesis 12
(1989) 2231–2235.
294 R.M. Schaaper, R.M.
Koplitz, L.K. Tkeshelashvili, L.A.
Loeb, Metal-induced
lethality and mutagenesis: possible role
of apurinic intermediates,
Mutat. Res. 177 (1987) 179–188.
295 K.S. Kasprzak, L.
Hernandez, Enhancement of hydroxylation
and deglycosylation of 2_-deoxyguanosine by carcinogenic
nickel compounds, Cancer
Res. 49 (1989) 5964–5968.
296 A.P. Grollman, M.
Moriya, Mutagenesis by 8-oxoguanine:
an enemy within, Trends Genet.
9 (1993) 246–249.
297 A. Hartwig, Current
aspects in metal genotoxicity, BioMetals
8 (1995) 3–11.
298 S.A. Weitzman, Influence
of oxygen radical injury on DNA
methylation, Mutat. Res. 386
(1997) 141–152.
299 M.K. Morrison, J.M.
Kotler, B.D. Martin, K.D. Sugden,
Oxidized guanine lesions as
modulators of gene transcription,
Biochemistry 42 (2003)
9761–9770.
300 G.S. Buzard, K.S.
Kasprzak, Possible roles of nitric oxide
and redox cell signaling in
metal-induced toxicity and
carcinogenesis: a review, J.
Environ. Pathol. Toxicol. Oncol.
19 (2000) 179–199.
301 S. Bergelson, R. Pinkus,
V. Daniel, Intracellular glutathione
levels regulate fos/jun
induction and activation of glutathione
S-transferase gene
expression, Cancer Res. 54 (1994) 36–40.
302 M. Meyer, R. Schreck,
P.A. Baeuerle, H2O2 and antioxidants
have opposite effects on
activation of NFkB and AP-1 in
intact cells: AP-1 as
secondary antioxidant-responsive factor,
EMBO J. 12 (1993) 2005–2015.
K.S.
Kasprzak et al. / Mutation Research 533 (2003) 67–97 97
303 M. Costa, J.E.
Sutherland, W. Peng, K. Salnikow, L. Broday,
T. Kluz, Molecular biology
of nickel carcinogenesis, Mol.
Cell. Biochem. 222 (2001)
205–211.
304 P. Burtayre, J. Liquier,
J. Taboury, L. Pizzorni, J.F. Labarre,
E. Taillandier, Z-form
induction in DNA by carcinogenic
nickel compounds. An optical
spectroscopy study, in: F.W.
Sunderman Jr., (Ed.), Nickel
in the Human Environment,
vol. 53, IARC Scientific
Publications, Lyon, 1984, pp. 227–
234.
305 F.E. Rossetto, E.
Nieboer, The interaction of metal ions
with synthetic DNA:
induction of conformational and
structural transitions, J.
Inorg. Biochem. 54 (1994) 167–
186.
306 H. Sigel, Metal ions and
hydrogen peroxide. XXIX. On
the kinetics and mechanism
of the catalyse-like activity of
nickel(II) and nickel(II)
amine complexes, J. Coord. Chem.
3 (1974) 235–247.
307 D.R. Lloyd, P.L.
Carmichael, D.H. Phillips, Comparison
of the formation of
8-hydroxy-2_-deoxyguanosine and
single- and double-strand
breaks in DNA mediated by
fenton reactions, Chem. Res.
Toxicol. 11 (1998) 420–
427.
308 F.W. Sunderman Jr., C.E.
Selin, The metabolism of nickel-
63 carbonyl, Toxicol. Appl.
Pharmacol. 1 (1968) 297–318.
309 K.S. Kasprzak, F.W.
Sunderman Jr., The metabolism of
nickel carbonyl-14C,
Toxicol. Appl. Pharmacol. 15 (1969)
295–303.
310 S.E. Rokita, C.J.
Burrows, Nickel- and cobalt-dependent
oxidation and crosslinking
of proteins, Met. Ions Biol. Syst.
38 (2001) 289–311.
311 C.J. Burrows, J.G.
Muller, Oxidative nucleobase modifi-
cations leading to strand
scission, Chem. Rev. 98 (1998)
1109–1152.
312 H. Dally, A. Hartwig,
Induction and repair inhibition of
oxidative DNA damage by
nickel(II) and cadmium(II) in
mammalian cells,
Carcinogenesis 18 (1997) 1021–1026.
313 G.L. Semenza, Regulation
of mammalian O2 homeostasis
by hypoxia-inducible factor
1, Annu. Rev. Cell. Dev. Biol.
15 (1999) 551–578.
314 E. Horak, E.R. Zygowicz,
R. Tarabishy, J.M. Mitchell,
F.W. Sunderman Jr., Effects
of nickel chloride and nickel
carbonyl upon glucose
metabolism in rats, Ann. Clin. Lab.
Sci. 8 (1978) 476–482.
315 K.K. Graven, R.J. McDonald, H.W. Farber, Hypoxia
regulation of endothelial
glyceraldehyde-3-phosphate dehydrogenase,
Am. J. Physiol. 43 (1998) 347–355.
316 O. Warburg, On
respiratory impairment in cancer cells,
Science 123 (1956) 309–314.
317 J. Chesney, R. Mitchell,
F. Benigni, M. Bacher, L. Spiegel,
Y. Al-Abed, J.H. Han, C.
Metz, R. Bucala, An inducible
gene product for
6-phosphofructo-2-kinase with an AU-rich
instability element: role in
tumor cell glycolysis and the
Warburg effect, Proc. Natl. Acad. Sci. U.S.A. 96 (1999)
3047–3052.